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Abstract. Using an eikonal structure for the scattering amplitude, Block and Kaidalov [1] have derived
factorization theorems for nucleon-nucleon, γp and γγ scattering at high energies, using only some very
general assumptions. We present here an analysis giving experimental confirmation for factorization of
cross sections, nuclear slope parameters B and ρ-values (ratio of real to imaginary portion of forward
scattering amplitudes), showing that:
– the three factorization theorems [1] hold,
– the additive quark model holds to ≈ 1%,
– and vector dominance holds to better than ≈ 4%.

1 Introduction

Assuming factorizable eikonals in impact parameter space
b for nucleon-nucleon, γp and γγ scattering processes
whose opacities are equal, Block and Kaidalov [1] have
proved three factorization theorems:

1. σnn(s)
σγp(s)

= σγp(s)
σγγ(s)

,

where the σ’s are the total cross sections for nucleon-
nucleon, γp and γγ scattering,

2. Bnn(s)
Bγp(s)

= Bγp(s)
Bγγ(s)

,

where the B’s are the nuclear slope parameters for
elastic scattering,

3. ρnn(s)
ργp(s)

= ργp(s)
ργγ(s)

,

where the ρ’s are the ratio of the real to imaginary
portions of the forward scattering amplitudes,

with each factorization theorem having its own propor-
tionality constant. These theorems are exact, for all s
(where

√
s is the c.m.s. energy), and survive exponenti-

ation of the eikonal [1].
Physically, the assumption of equal opacities, where

the opacity is defined as the value of the eikonal at b = 0,
is the same as demanding that the ratios of elastic to total
cross sections are equal, i.e.,
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(
σel

σtot

)
nn

=
(
σel

σtot

)
γp

=
(
σel

σtot

)
γγ

, (1)

as the energy goes to infinity [1].
Factorization theorem 1, involving ratios of cross sec-

tions, is perhaps the best known. Factorization theorems
2 and 3 are less known, but turn out to be of primary
importance. The purpose of this note is to present strong
experimental evidence for all three factorization theorems,
as well as evidence for the additive quark model and vector
dominance.

2 Eikonal model

In an eikonal model [3], a (complex) eikonal χ(b, s) is de-
fined such that a(b, s), the (complex) scattering amplitude
in impact parameter space b, is given by

a(b, s) =
i

2

(
1 − eiχ(b,s)

)
=
i

2

(
1 − e−χI (b,s)+iχR (b,s)

)
.

(2)
Using the optical theorem, the total cross section σtot(s)
is given by

σtot(s) = 2
∫ [

1 − e−χI (b,s) cos(χR(b, s))
]
d2b, (3)

the elastic scattering cross section σel(s) is given by

σelastic(s) =
∫ ∣∣∣1 − e−χI (b,s)+iχR (b,s)

∣∣∣2 d2b (4)

and the inelastic cross section, σinelastic(s), is given by

σinelastic(s) = σtot(s) − σelastic(s)



330 M.M. Block et al.: On factorization, quark counting and vector dominance

=
∫ [

1 − e−2χI (b,s)
]
d2b. (5)

The ratio of the real to the imaginary part of the forward
nuclear scattering amplitude, ρ, is given by

ρ(s) =
Re
{
i(
∫
1 − e−χI (b,s)+iχR (b,s)) d2b

}
Im
{
i(
∫
(1 − e−χI (b,s)+iχR (b,s)) d2b

} (6)

and the nuclear slope parameter B is given by

B =
∫
b2a(b, s) d2b

2
∫
a(b, s) d2b

. (7)

2.1 Even eikonal

A description of the forward proton–proton and proton–
antiproton scattering amplitudes is required which is an-
alytic, unitary, satisfies crossing symmetry and the Frois-
sart bound. A convenient parameterization [2,3] consis-
tent with the above constraints and with the high-energy
data can be constructed in a model where the asymptotic
nucleon becomes a black disk as a reflection of particle
(jet) production. The increase of the total cross section
is the shadow of jet-production which is parameterized in
parton language. The picture does not reproduce the lower
energy data which is simply parameterized using Regge
phenomenology. The even QCD-inspired eikonal χeven for
nucleon-nucleon scattering [2,3] is given by the sum of
three contributions, gluon-gluon, quark-gluon and quark-
quark, which are individually factorizable into a product
of a cross section σ(s) times an impact parameter space
distribution function W (b ;µ), i.e.,:

χeven(s, b) = χgg(s, b) + χqg(s, b) + χqq(s, b)

= i
[
σgg(s)W (b ;µgg) + σqg(s)W (b ;

√
µqqµgg)

+σqq(s)W (b ;µqq)
]
, (8)

where the impact parameter space distribution function is
the convolution of a pair of dipole form factors:

W (b ;µ) =
µ2

96π
(µb)3K3(µb). (9)

It is normalized so that
∫
W (b ;µ)d2b = 1. Hence, the σ’s

in (8) have the dimensions of a cross section. The factor
i is inserted in (8) since the high energy eikonal is largely
imaginary (the ρ value for nucleon-nucleon scattering is
rather small).

The opacity of the eikonal, its value at b = 0, is given
by

Onn =
i

12π
[
σgg(s)µ2

gg + σqg(s)µ2
qg + σqq(s)µ2

qq
]
, (10)

a simple sum of the products of the appropriate cross sec-
tions σ with the µ2’s, a result which we will utilize later.
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Fig. 1. The fitted σpp and σp̄p, in mb vs.
√

s, in GeV, for the
QCD-inspired fit of total cross section, B and ρ for both pp and
p̄p. The accelerator data (squares are pp and circles are p̄p)
and the cosmic ray points (diamond, Fly’s Eye and triangles,
AGASA) have been fitted simultaneously. The cosmic ray data
that are shown have been converted from σinel

p−air to σpp

2.2 Odd eikonal

The odd eikonal, χodd(b, s) = iσoddW (b;µodd), accounts
for the difference between pp and pp̄, and must vanish at
high energies. A Regge behaved analytic odd eikonal can
be parametrized as (see (5.5b) of [4])

χodd(b, s) = −CoddΣgg
m0√
s
eiπ/4W (b;µodd) (11)

where µodd is determined by experiment and the normal-
ization constant Codd is to be fitted.

2.3 Total eikonal

The data for both pp and p̄p are fitted using the total
eikonal

χp̄p
pp = χeven ± χodd. (12)

The definitions and values of the various parameters
used in χp̄p

pp are given in the Appendix.

3 A global fit of accelerator
and cosmic ray data

Using an eikonal analysis in impact parameter space,
Block et al. [2,3,6] have constructed a QCD-inspired pa-
rameterization of the forward proton–proton and proton–
antiproton scattering amplitudes which fits all accelerator
data [5] for σtot, nuclear slope parameter B and ρ, the
ratio of the real-to-imaginary part of the forward scatter-
ing amplitude for both pp and p̄p collisions, using a χ2

procedure and the eikonal of (12); see Fig. 1 and Fig. 2
which are taken from [6]—in addition, the high energy
cosmic ray cross sections of Fly’s Eye [7] and AGASA [8]
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experiments are also simultaneously fitted [6]. Because the
parameterization is both unitary and analytic, its high en-
ergy predictions are effectively model–independent, if you
require that the proton is asymptotically a black disk. A
major difference between simultaneously fitting the cos-
mic ray and accelerator data and earlier results in which
only accelerator data were used, is a lowering (by about a
factor of ≈ 2) of the error of the predictions for the high
energy cross sections. In particular, the error in σpp at√
s = 30 TeV is reduced to ≈ 1.5%, because of significant

reductions in the errors estimated for the fit parameters
(for a more complete explanation, see [6]).

The plot of σpp vs.
√
s, including the cosmic ray data,

is shown in Fig. 1, which was taken from [6]. The over-
all agreement between the accelerator and the cosmic ray
pp cross sections with the QCD-inspired fit, as shown in
Fig. 1, is striking.

In brief, the eikonal description provides an excellent
description of the experimental data at high energy for
both pp and p̄p scattering at high energies.

4 Factorization

We emphasize that the QCD-inspired parameterization of
the pp and p̄p data [2,3,6] allows us to calculate accurately
the even eikonal of (8) needed for:

– the total cross section σnn (from (3)) used in the fac-
torization theorem 1,

– the nuclear slope parameter Bnn (from (7)) used in the
factorization theorem 2,

– and the ρ-value ρnn (from (6)) used in the factorization
theorem 3,

since we must compare nn to γp and γγ reactions.

4.1 Theorems

As shown in [1], the eikonals for γp and γγ scattering that
satisfy (1)are given by

χγp(s, b) = i

[
κσgg(s)W

(
b ;

√
1
κ
µgg

)

+κσqg(s)W

(
b ;

√
1
κ

√
µqqµgg

)

+κσqq(s)W

(
b ;

√
1
κ
µqq

)]
, (13)

and

χγγ(s, b) = i
[
κ2σgg(s)W

(
b ;

1
κ
µgg

)

+κ2σqg(s)W
(
b ;

1
κ

√
µqqµgg

)

+κ2σqq(s)W
(
b ;

1
κ
µqq

)]
, (14)
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Fig. 2a,b. The fitted values for the nuclear slope parameters
Bpp and Bp̄p, in (GeV/c)−2 vs.

√
s, in GeV, for the QCD-

inspired fit are shown in a. In b, the fitted values for ρp̄p and
ρpp are shown

where we obtain χγp from χeven from multiplying each σ in

χeven by κ and each µ by
√

1
κ , and, in turn, we next obtain

χγγ from χγp from multiplying each σ in χγp by κ and each

µ by
√

1
κ . The κ in (13) and (14) is an energy-independent

proportionality constant. We emphasize that the same κ
must be used in the gluon sector as in the quark sector for
the ratio of

(
σel
σtot

)
to be process-independent (see (1)).

The functional forms of the impact parameter distri-
butions are assumed to be the same for γp, γγ and nn
reactions. It is clear from using (9), (13), (14) and then
comparing to the opacity of (10), that the three opacities
are all the same, i.e.,

Onn = Oγp

= Oγγ

=
i

12π
[
σgg(s)µ2

gg + σqg(s)µ2
qg + σqq(s)µ2

qq
]
. (15)

Hence, from [1], we have the three factorization theorems
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Fig. 3. The solid curve is ρnn, the predicted ratio of the real
to imaginary part of the forward scattering amplitude for the
‘elastic’ reactions, γ+p → V +p scattering amplitude, where V
is ρ, ω or φ (using the factorization theorem of (21)). The dot-
ted curve is ratio of the real to imaginary part of the forward
scattering amplitude for Compton scattering, γ + p → γ + p,
found from dispersion relations[9]. It has been slightly dis-
placed from the solid curve for clarity in viewing

σnn(s)
σγp(s)

=
σγp(s)
σγγ(s)

(16)

Bnn(s)
Bγp(s)

=
Bγp(s)
Bγγ(s)

(17)

ρnn(s)
ργp(s)

=
ργp(s)
ργγ(s)

, (18)

valid for all s. It is easily inferred from [1] that

σγγ(s) = κP
γ
hadσγp(s) = (κP γ

had)
2
σnn(s) (19)

Bγγ(s) = κBγp(s) = κ2Bnn(s) (20)
ργγ(s) = ργp(s) = ρnn(s), (21)

where P γ
had is the probability that a photon transforms

into a hadron, assumed to be independent of energy and
κ is a proportionality constant, also independent of energy.
The value of κ, of course, is model-dependent. For the case
of the additive quark model, κ = 2

3 .
We emphasize the importance of the result of (21) that

the ρ’s are all equal, independent of the assumed value
of κ, i.e., the equality does not depend on the assumed
model. We reiterate that if the κ for the gluon sector is
not equal to κ for the quark sector that ρnn is completely
different from ργp, Bγp is very different from κBnn and
cross section factorization breaks down completely, at all
energies.

4.2 Experimental verification of factorization
using compton scattering

The solid curve in Fig. 3 is ρnn, plotted as a function of
the c.m.s. energy

√
s. According to (21), this should be

the same as ργp. No experimental data for the ‘elastic
scattering’ reactions γ + p → V + p, where V is the vec-
tor meson ρ, ω or φ, are available for direct comparison.
However, Damashek and Gilman [9] have calculated the
ρ value for Compton scattering γ + p → γ + p using dis-
persion relations, i.e., the true elastic scattering reaction
for photon-proton scattering. The dispersion relation cal-
culation gives ργp if we assume that it is the same as that
for the ‘elastic scattering’ reactions γ + p → V + p. In
this picture we expect that Bγp = Bρ = Bω = Bφ. We
then compare the dispersion relation calculation, the dot-
ted line in Fig. 3, with our prediction for ργp from (21)
(ρnn, the solid line taken from [6]). The agreement is so
close that the two curves had to be moved apart so that
they may be viewed more clearly. It is clearly of impor-
tance to extend the energy region of the dispersion calcu-
lation. However, over the limited energy range available
from the dispersion calculation, the prediction from (21)
of equal ρ-values is well verified experimentally.

4.3 Quark counting

The additive quark model tells us from quark counting
that κ in (20) is given by κ = 2

3 . We can experimentally de-
termine κ by invoking from (20) the relation Bγp = κBnn
(Bnn is computed using the parameters from [6]), and fit-
ting κ. In our picture, the ‘elastic scattering’ reactions
γ + p → V + p, where V is the vector meson ρ, ω or φ,
require that Bρ = Bω = Bφ(= Bγp). To determine the
value of κ in the relation Bγp = κBnn, a χ2 fit was made
to the available Bγp data. In Fig. 4 we plot κBnn vs. the
c.m.s. energy

√
s, using the best-fit value of κ = 0.661,

against the experimental values of Bγp. The fit gave κ =
0.661 ± 0.008, with a total χ2 = 16.4 for 10 degrees of
freedom. Inspection of Fig. 4 shows that the experimental
point of Bρ at

√
s = 5.2 GeV— which contributes 6.44 to

the χ2—clearly cannot lie on any smooth curve and thus
can safely be ignored. Neglecting the contribution of this
point gives a χ2/d.f.=0.999, a very satisfactory result. We
emphasize that the experimental γp data thus

– require κ = 0.661 ± 0.008, a ≈ 1% measurement in
excellent agreement with the value of 2/3 that is ob-
tained from the additive quark model.

– clearly verify the nuclear slope factorization theorem
of (20) over the available energy range spanned by the
data.

For additional evidence involving the equality of the
nuclear slopes Bρ, Bγ and Bφ from differential elastic
scatttering data dσ

dt , see Figs. 13–15 of [3].

4.4 Vector dominance, using γp cross sections

Using κ = 2
3 and (19), we write

σγp(s) =
2
3
P γ

had σnn(s), (22)
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Fig. 4. A χ2 fit of experimental data for the nuclear slopes B,
from the ‘elastic scattering’ reactions γ + p → V + p, where
V is ρ, ω or φ, to the relation Bγp = κBnn, of (20), where
κ = 0.661 ± 0.008

where P γ
had is the probability that a photon will interact

as a hadron. We will use the value P γ
had = 1/240. This

value is approximately 4% greater than that derived from
vector dominance, 1/249. Using (see Table XXXV, pag.
393 of [10]) f2

ρ/4π = 2.2, f2
ω/4π = 23.6 and f2

φ/4π = 18.4,
we find ΣV (4πα/f2

V ) = 1/249, where V = ρ, ω, φ. The
value we use of 1/240 is found by normalizing the total γp
cross section to the low energy data and is illustrated in
Fig. 5, where we plot the total cross section for γ + p →
hadrons from (22) as a function of the c.m.s. energy

√
s.

The values for σnn have been deduced from the results of
[6], using the even eikonal from (8). The fit is exceptionally
good, reproducing the rising cross section for γp, using the
parameters fixed by nucleon-nucleon scattering. The fact
that we use the value 1/240 rather than 1/249 (4% greater
than the vector meson prediction) reflects the fact that
P γ

had, the total probability that the photon is a hadron,
should have a small contribution from the continuum, as
well as from the vector mesons ρ, φ and ω. Thus, within
the uncertainties of our calculation, the experimental data
in the γp sector

– are compatible with vector meson dominance.
– agree with cross section factorization theorem of (19).

4.5 Experimental verification of factorization
using γγ scattering

Using quark counting and the factorization theorem of
(19), we now write σγγ =

( 2
3P

γ
had

)2
σnn where P γ

had =
1/240. In Fig. 6 we plot our factorization prediction for
σγγ(s) as a function of the c.m.s. energy

√
s and compare

it to various sets of experimental data. It is clear that
factorization, as expressed in (19), selects the preliminary
L3 data (solid circles) rather than the preliminary OPAL
results (solid squares) [11]. The Monte Carlo-averaged fi-
nal results of L3, given by the open circles, agrees, within
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Fig. 6. The predicted total cross section for γγ scattering from
the factorization theorem of (19), σγγ =

( 2
3P γ

had

)2
σnn, where

P γ
had = 1/240. The data sources are indicated in the legend

errors, with the revised OPAL data, with both new sets
having a normalization of about 15-20% higher than the
factorization prediction given by the solid line. The major
difference between the earlier L3 result and the revised
data was the use of the average normalization from the
output of two different Monte Carlos. We find it remark-
able that the cross section factorization theorem of (19),
using only input from the additive quark model and vec-
tor meson dominance, gives a reasonable prediction of the
experimental data over a cross section magnitude span
of more than a factor of 105 and an energy region of
3 ≤ √

s ≤ 100 GeV. On the other hand, a literal inter-
pretation of the experimental data at the higher energies
might indicate that the γγ cross section is rising slightly
more rapidly than our prediction, a consequence perhaps
of hard processes not accounted for by the vector domi-
nance model. More accurate data are required for confir-
mation of this hypothesis.
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5 Conclusions

The available data on nn, γp and γγ reactions lend strong
experimental support to the factorization hypotheses of

– the well-known cross section factorization theorem of
(16) and (19),

– the lessor-known nuclear slope factorization theorem
of (17) and (20),

– the relatively obscure requirement of (21) that ρnn =
ργp = ργγ ,

as well as

– verifying the additive quark model by measuring κ =
0.661 ± 0.008, a result within ≈ 1% of the value of
2/3 expected for the quark model, using Bγp measure-
ments over a wide span of energies, 3 ≤ √

s ≤ 200.
– confirming vector dominance using σnn, σγp and σγγ

over an energy region of 3 ≤ √
s ≤ 100 GeV and a

cross section factor of over 105.
The QCD-inspired model [3] that we use fits the pp
and p̄p data on total cross sections, ρ-values and B
quite well and thus gives a good phenomological fit
to those data. We emphasize that the conclusions on
factorization that we presented above are rooted in the
available high energy experimental data for nn, γp and
γγ collisions and do not depend on the details of the
model used to fit nn data.

A Appendix

For completeness, we summarize here the formulae and
parameters needed to calculate nucleon-nucleon scatter-
ing, taken from [3] and [6], which should be consulted for
more detail.

We model the gluon-gluon contribution to the nucleon-
nucleon cross section following the parton model

σgg(s) = Cgg

∫
Σgg Θ(ŝ−m2

0)Fgg(x1, x2) dτ , (23)

where Σgg = 9πα2
s/m

2
0 is a normalization constant, ŝ =

τs, and

Fgg =
∫ ∫

fg(x1)fg(x2)δ(τ − x1x2) dx1 dx2 . (24)

Note that for the parameterization of the gluon struc-
ture function as fg(x) = Ng(1 − x)5/x1+ε, where Ng =
1
2 (6 − ε)(5 − ε) · · · (1 − ε)/5!, we can carry out explicitly
the integrations, obtaining

σgg(s) = C ′
ggΣggN

2
g

5∑
i=0

{
a(i) − b(i)

i−ε

i− ε

−τ i−ε
0

(
a(i) − b(i)

i−ε

i− ε +
b(i)
i− ε log(τ0)

)}
(25)

where C ′
gg = Cgg/9, τ0 = m2

0/s, a(0) = −a(5) = −411/10,
a(1) = −a(4) = −975/2, a(2) = −a(3) = −600, b(0) =

Table 1. Value of the parameters

Fitted Fixed

C = 5.65 ± 0.14 αs = 0.5
Clog

qg = 0.103 ± 0.026 ε = 0.05
C′

gg = (1.12 ± 0.05) × 10−3 m0 = 0.6 GeV
Ceven

Regge = 25.3 ± 2.0 µqq = 0.89 GeV
Codd = 7.62 ± 0.28 µgg = 0.73 GeV
s0 = 16.9 ± 4.9 GeV2 µodd = 0.53 GeV

k = 1.349 ± 0.045

b(5) = −9, b(1) = b(4) = −225, and b(2) = b(3) = −900.
The normalization constant C ′

gg is a fitted parameter and
the threshold mass m0 is determined by experiment. The
role ofm0, which is the onset of σgg(s) with ŝ, is somewhat
analagous to the role played by pmin

T in the minijet models.
However, numerical exercises show that the value of m0
is not dependent on energy and that the fit is not very
sensitive to the value.

Also our quark-quark and quark-gluon cross sections
will be parameterized following the scaling parton model.
We approximate the quark-quark contribution with

σqq(s) = Σgg

(
C + Ceven

Regge

m0√
s

)
, (26)

where C and Ceven
Regge are parameters to be fitted. The

quark-gluon interaction is approximated as

σqg(s) = ΣggC
log
qg log

s

s0
, (27)

where the normalization constant Clog
qg and the square of

the energy scale in the log term s0 are parameters are
parameters to be fitted.

In summary, the even contribution to the eikonal is

χeven = i

{
σgg(s)W (b ;µgg)

+Σgg

(
C + Ceven

Regge

m0√
s

)
W (b ;µqq)

+ΣggC
log
qg log

s

s0
W (b ;

√
µqqµgg)

}
. (28)

The total even contribution is not yet analytic. For large s,
the even amplitude in (8) is made analytic by the substitu-
tion (see the table on p. 580 of reference [4], along with ref-
erence [12]) s → se−iπ/2. The quark contribution χqq(s, b)
accounts for the constant cross section and a Regge de-
scending component (∝ 1/

√
s), whereas the mixed quark-

gluon term χqg(s, b) simulates diffraction (∝ log s). The
gluon-gluon term χgg(s, b), which eventually rises as a
power law sε, accounts for the rising cross section and
dominates at the highest energies. In (8), the inverse sizes
(in impact parameter space) µqq and µgg are determined
by experiment, whereas the quark-gluon inverse size is
taken as √

µqqµgg.
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In addition to the parameters in [3], the cosmic ray
data fit requires the specification of another parameter k,
the proportionality constant between the measured mean
free path (in air) and the true mean free path in air. The
major difference between the parameters of Table 1 and
the parameters of [3] is that the errors of C ′

gg and s0 are
now smaller by a factor of ≈ 2, due to the large lever arm
of the high energy cosmic ray points. This in turn leads
to significantly smaller errors in our predictions for high
energy cross sections, since the dominant term at high
energies is σgg(s).
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